On the space of riemannian metrics satisfying surgery stable curvature conditions
نویسندگان
چکیده
We utilize a condition for algebraic curvature operators called surgery stability as suggested by the work of Hoelzel to investigate space riemannian metrics over closed manifolds satisfying these conditions. Our main result is parametrized Gromov–Lawson construction with not necessarily trivial normal bundles and shows that homotopy type this invariant under surgeries suitable codimension. This generalization well-known theorem Chernysh Walsh positive scalar curvature. As an application our method, we show on quaternionic projective spaces are equivalent spheres.
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملthe effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)
cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...
On the Curvature of a Certain Riemannian Space of Matrices
The state space of a finite quantum system is identified with the set of positive semidefinite matrices of trace 1. The set of all strictly positive definite matrices of trace 1 becomes naturally a differentiable manifold and the Bogoliubov–Kubo– Mori scalar product defines a Riemannian structure on it. Reference 4 tells about the relation of this metric to the von Neumann entropy functional. I...
متن کاملSobolev Metrics on the Riemannian Manifold of All Riemannian Metrics
On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...
متن کاملH-type Riemannian Metrics on the Space of Planar Curves
Michor and Mumford have shown that the distances between planar curves in the simplest metric (not involving derivatives) are identically zero. We derive geodesic equations and a formula for sectional curvature for conformally equivalent metrics. We show if the conformal factor depends only on the length of the curve, the metric behaves like an L metric, the sectional curvature is not bounded f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2023
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-023-02563-4